508 research outputs found

    Stochastic Optimization with Importance Sampling

    Full text link
    Uniform sampling of training data has been commonly used in traditional stochastic optimization algorithms such as Proximal Stochastic Gradient Descent (prox-SGD) and Proximal Stochastic Dual Coordinate Ascent (prox-SDCA). Although uniform sampling can guarantee that the sampled stochastic quantity is an unbiased estimate of the corresponding true quantity, the resulting estimator may have a rather high variance, which negatively affects the convergence of the underlying optimization procedure. In this paper we study stochastic optimization with importance sampling, which improves the convergence rate by reducing the stochastic variance. Specifically, we study prox-SGD (actually, stochastic mirror descent) with importance sampling and prox-SDCA with importance sampling. For prox-SGD, instead of adopting uniform sampling throughout the training process, the proposed algorithm employs importance sampling to minimize the variance of the stochastic gradient. For prox-SDCA, the proposed importance sampling scheme aims to achieve higher expected dual value at each dual coordinate ascent step. We provide extensive theoretical analysis to show that the convergence rates with the proposed importance sampling methods can be significantly improved under suitable conditions both for prox-SGD and for prox-SDCA. Experiments are provided to verify the theoretical analysis.Comment: 29 page

    Active Learning with Expert Advice

    Get PDF
    Conventional learning with expert advice methods assumes a learner is always receiving the outcome (e.g., class labels) of every incoming training instance at the end of each trial. In real applications, acquiring the outcome from oracle can be costly or time consuming. In this paper, we address a new problem of active learning with expert advice, where the outcome of an instance is disclosed only when it is requested by the online learner. Our goal is to learn an accurate prediction model by asking the oracle the number of questions as small as possible. To address this challenge, we propose a framework of active forecasters for online active learning with expert advice, which attempts to extend two regular forecasters, i.e., Exponentially Weighted Average Forecaster and Greedy Forecaster, to tackle the task of active learning with expert advice. We prove that the proposed algorithms satisfy the Hannan consistency under some proper assumptions, and validate the efficacy of our technique by an extensive set of experiments.Comment: Appears in Proceedings of the Twenty-Ninth Conference on Uncertainty in Artificial Intelligence (UAI2013

    Parallel Graph Connectivity in Log Diameter Rounds

    Full text link
    We study graph connectivity problem in MPC model. On an undirected graph with nn nodes and mm edges, O(logn)O(\log n) round connectivity algorithms have been known for over 35 years. However, no algorithms with better complexity bounds were known. In this work, we give fully scalable, faster algorithms for the connectivity problem, by parameterizing the time complexity as a function of the diameter of the graph. Our main result is a O(logDloglogm/nn)O(\log D \log\log_{m/n} n) time connectivity algorithm for diameter-DD graphs, using Θ(m)\Theta(m) total memory. If our algorithm can use more memory, it can terminate in fewer rounds, and there is no lower bound on the memory per processor. We extend our results to related graph problems such as spanning forest, finding a DFS sequence, exact/approximate minimum spanning forest, and bottleneck spanning forest. We also show that achieving similar bounds for reachability in directed graphs would imply faster boolean matrix multiplication algorithms. We introduce several new algorithmic ideas. We describe a general technique called double exponential speed problem size reduction which roughly means that if we can use total memory NN to reduce a problem from size nn to n/kn/k, for k=(N/n)Θ(1)k=(N/n)^{\Theta(1)} in one phase, then we can solve the problem in O(loglogN/nn)O(\log\log_{N/n} n) phases. In order to achieve this fast reduction for graph connectivity, we use a multistep algorithm. One key step is a carefully constructed truncated broadcasting scheme where each node broadcasts neighbor sets to its neighbors in a way that limits the size of the resulting neighbor sets. Another key step is random leader contraction, where we choose a smaller set of leaders than many previous works do
    corecore